Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhao-Lian Chu and Wei Huang*

State Key Laboratory of Coordination Chemistry, Coordination Chemistry Institute, Nanjing University, Nanjing 210093, People's Republic of China

Correspondence e-mail: whuang@nju.edu.cn

Key indicators

Single-crystal X-ray study
$T=291 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.126$
Data-to-parameter ratio $=15.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-Hydroxymethyl-4-methylphenol

The title compound, $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$, packs into a three-dimensional network via intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions; a 12-membered ring is produced by hydrogenbonded dimers.

Comment

Salicyl alcohol and its derivatives are very useful reactants in organic synthesis. Salicylaldehyde derivatives are commonly prepared directly by the oxidation of the corresponding salicyl alcohol. Furthermore, they are effectively used in medicine as a result of their physiological activities, such as anaesthetic, antispasmodic and antiseptic (Dunning et al., 1936). Up until now, only a few structural determinations of related salicyl alcohols have been reported (Leger et al., 1978; Zorkii et al., 1985; Halit et al., 1987; Cox, 2003).

(I)

The molecular structure of the title compound, (I), with the atom-numbering scheme is shown in Fig. 1, while selected bond distances and angles are given in Table 1. All the bond lengths and angles have normal values and are in good agreement with those found in similar compounds (Chu et al., 2004, 2005). Apart from the O and H atoms of the hydroxymethyl group and the H atoms attached to C 8 , the whole molecule is essentially planar. The out-of-plane hydroxymethyl atom O 2 is 1.317 (2) \AA from the mean plane of the remaining non- H atoms in the molecule, the $\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-$ O 2 torsion angle being 72.7 (2) ${ }^{\circ}$.

All the O atoms in (I) contribute to the formation of intermolecular hydrogen bonds; however, no intramolecular hydrogen bonds are observed. Four $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds link every molecule with three neighbouring molecules, in which atoms O 1 and O 2 serve as both donors and acceptors. Thus, a 12-membered hydrogen-bonded ring (Fig. 2) is generated in each centrosymmetric dimer; this is similar to the situation in 4-bromo-2-hydroxymethylphenol (Cox, 2003).

Figure 1
The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
A perspective view of the intermolecular hydrogen-bond contacts in (I). Hydrogen bonds are shown as dashed lines. [Symmetry codes: (i) $x, \frac{1}{2}-y$, $\frac{1}{2}+z$; (ii) $\left.1-x, 1-y, 2-z\right]$.

These $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond contacts help to form a three-dimensional network structure in (I) (Fig. 3). In the crystal packing, there are two sets of benzene rings, with a dihedral angle of $69.8(2)^{\circ}$, and each set packs in a parallel fashion. Nevertheless, there is no evidence of significant $\pi-\pi$

Figure 3
A three-dimensional packing diagram of (I). For clarity, only H atoms involved in hydrogen bonds are shown. Hydrogen-bond contacts are indicated by dashed lines.
interactions due to the large offset between the two benzene rings. Inside these parallel rings, molecules are tightly associated into dimeric subunits around inversion centres by two complementary hydrogen bonds.

Experimental

The title compound, (I), was prepared according to the literature method of Belyanin et al. (2001). Reaction of 4-methylphenol with paraformaldehyde in the presence of boric acid gave (I) in 73% yield [m.p. 377-378 K, literature 378-379 K (Nagata et al., 1979)]. Elemental analysis calculated for $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$: C $69.54, \mathrm{H} 7.30 \%$; found: C 69.52, H 7.24%. Main FT-IR (KBr, cm^{-1}): $3437(s), 3158(s), 2963$ (s), 2910 (m), 1619 (m), 1512 (m), 1485 (m$), 1441$ (m$), 1411$ (m$), 1267$ $(s), 1124(s), 1017(s), 815(s) .{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}, \mathrm{TMS}\right): ~ 2.27(s$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.85\left(s, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.28(s, 1 \mathrm{H}, \mathrm{OH}), 7.04(s, 1 \mathrm{H}, \mathrm{ArH}), 7.02$ $(s, 1 \mathrm{H}, \mathrm{ArH}), 6.87(s, 1 \mathrm{H}, \mathrm{ArH}), 6.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH})$. Colourless single crystals of (I) suitable for X-ray analysis were grown from a toluene solution by slow evaporation at room temperature in air.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}_{2}$
$M_{r}=138.16$
Monoclinic, $P 2_{1} / c$
$a=16.322$ (3) A
$b=5.4697$ (9) \AA
$c=8.4504(14) \AA$
$\beta=101.447(3)^{\circ}$
$V=739.4(2) \AA^{3}$
$Z=4$

$$
D_{x}=1.241 \mathrm{Mg} \mathrm{~m}^{-3}
$$

$$
\text { Mo } K \alpha \text { radiation }
$$

Cell parameters from 1038 reflections
$\theta=2.5-26.1^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=291$ (2) K
Block, colourless
$0.20 \times 0.20 \times 0.10 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\text {min }}=0.985, T_{\text {max }}=0.994$
4132 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.126$
$S=0.92$
1590 reflections
100 parameters

1590 independent reflections 996 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.065$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-11 \rightarrow 20$
$k=-6 \rightarrow 6$
$l=-10 \rightarrow 10$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0673 P)^{2}\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$ 。
$\Delta \rho_{\max }=0.14 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left({ }^{\mathrm{A}},{ }^{\circ}\right)$.

$\mathrm{C} 1-\mathrm{C} 7$	$1.494(2)$	$\mathrm{C} 7-\mathrm{O} 2$	$1.4331(18)$
$\mathrm{O} 2-\mathrm{C} 7-\mathrm{C} 1$	$109.21(12)$		

Table 2
Hydrogen-bond geometry (A°).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.82(2)$	$1.89(2)$	$2.670(2)$	$158(2)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 2 \cdots \mathrm{O}^{1 i}$	0.86 (2)	1.96 (2)	$2.805(2)$	$169(2)$

Symmetry codes: (i) $x,-y+\frac{1}{2}, z+\frac{1}{2}$; (ii) $-x+1,-y+1,-z+2$.

The C -bound H atoms were placed in geometrically idealized positions ($\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$) and refined as riding atoms, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for the methyl C atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for the methylene C atoms. The O -bound H atoms were located in a difference Fourier map and refined isotropically.

Data collection: SMART (Bruker 2000); cell refinement: SAINT (Bruker 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Bruker 2000); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

WH thanks the National Natural Science Foundation of China (project No. 20301009) for financial support.

References

Belyanin, M. L., Filimonov, V. D. \& Krasnov, E. A. (2001). Russ. J. Appl. Chem. 74, 103-105.
Bruker (2000). SMART (Version 5.622), SAINT (Version 6.02a), SADABS (Version 6.02a) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
Chu, Z.-L., Huang, W., Cui, K. \& Gou, S.-H. (2004). Acta Cryst. E60, o1043o1045.
Chu, Z.-L., Huang, W. \& Gou, S.-H. (2005). Acta Cryst. E61, o1624-o1626. Cox, P. J. (2003). Acta Cryst. C59, o512-o513.
Dunning, B., Dunning, F. Jr \& Reid, E. E. (1936). J. Am. Chem. Soc. 58, 15651568.

Halit, M., Oehler, D., Perrin, M., Grabowski, M. J. \& Stepien, A. (1987). J. Crystallogr. Spectrosc. Res. 17, 597-604.
Leger, J. M., Goursolle, M., Gadret, M. \& Carpy, A. (1978). Acta Cryst. B34, 1203-1208. Nagata, W., Okada, K. \& Aoki, T. (1979). Synthesis, pp. 365-368. Nagata, W., Okada, K. \& Aoki, T. (1979). Synthesis (Stuttgart), pp. 365-368.
Zorkii, P. M., Kushnikov, I. A., Belskii, V. K., Zavodnik, V. E. \& Zasurskaia, L. A. (1985). Dokl. Akad. Nauk SSSR, 283, 408-410.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

